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On Boundedness of Lagrange Interpolation in Lp , p<1
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We estimate the distribution function of a Lagrange interpolation polynomial
and deduce mean boundedness in Lp , p<1. � 1999 Academic Press

1. THE RESULT

There is a vast literature on mean convergence of Lagrange interpola-
tion, see [4�8] for recent references. In this note, we use distribution
functions to investigate mean convergence. We believe the simplicity of the
approach merits attention.

Recall that if g: R � R, and m denotes Lebesgue measure, then the
distribution function mg of g is

mg(*) :=m([x: | g(x)|>*]), *�0. (1)

One of the uses of mg is in the identity [1, p. 43]

&g& p
Lp(R)=|

�

0
pt p&1mg(t) dt, 0< p<�. (2)

Moreover, the weak L1 norm of g may be defined by

&g&weak(L1)=sup
*>0

*mg(*). (3)

If

&g&Lp(R)<�,

then for p<�, it is easily seen that

mg(*)�*&p &g& p
Lp(R) , *>0, (4)
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and if p=�,

mg(*)=0, *>&g&L�(R) .

Our result is:

Theorem 1. Let w, &: R � R be measurable and let & have compact
support. Let n�1 and let ?n be a polynomial of degree n with n real simple
zeros [tjn]n

j=1 . Let

0n := :
n

j=1

1
|?$n w| (tjn)

. (5)

(a) Let 0<r<� and assume there exists A>0 such that

m?n&(*)�A*&r, *>0. (6)

Then if Ln[ f ] denotes the Lagrange interpolation polynomial to f at the
zeros [tjn] of ?n , we have

mLn[ f ] &(*)�2A1�(r+1)(8 & fw&L�(R) 0n �*)r�(r+1), *>0. (7)

(b) Assume that

m?n&(*)=0, *>A. (8)

Then

mLn[ f ] &(*)�A & fw&L�(R)0n �*, *>0. (9)

Corollary 2. Let w, & be as in Theorem 1 and assume that we are
given ?n , [tjn]n

j=1 for each n�1 and

0 :=sup
n�1

:
n

j=1

1
|?$nw| (t jn)

<�. (10)

(a) If r<� and (6) holds for n�1, then for 0< p<r�(1+r), we have
for some C1 independent of f, n

&Ln[ f ]&&Lp(R)�C1 & fw&L�(R) . (11)

(b) If (8) holds for n�1, then we have (11) for 0< p<1, as well as

&Ln[ f ]&&weak(L1)�C1 & fw&L�(R) . (12)
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Remarks. (a) Note that (6) holds if

&?n&& r
Lr(R)�A, n�1

and (8) holds if

&?n&&L�(R)�A.

Of course (6) is a weak Lr condition.

(b) Under mild additional conditions on w and & that guarantee
density of the polynomials in the relevant spaces, the projection property
Ln[P]=P, deg(P)�n&1, allows us to deduce mean convergence of
Ln[ f ] to f.

(c) Orthogonal polynomials [ pn(u, x)]�
n=0 such as those for

generalized Jacobi weights u [4] or the exponential weights u in [2] admit
the bound

| pn(u, x)| u1�2(x)�C } 1&
|x|
an }

&1�4

, x # [&1, 1]

for a C independent of n and a suitable choice of an . Thus these polyno-
mials admit the bound (6) with r=4. Moreover, if [tjn] are the zeros of pn ,
then a great deal is known about p$n(tjn), and in particular (10) holds with
an appropriate choice of w. More generally, for extended Lagrange
interpolation, involving interpolation at the zeros of Snpn , where Sn is a
polynomial of fixed degree, it is easy to verify (10) under mild conditions
on Sn .

(d) A result of Shi [7] implies that if (11) holds with C1 independent
of f and n, and if ?n is normalized by the condition

&?n&&Lp(R)=1,

while the [tjn] are all contained in a bounded interval, then (10) holds.
Thus in this case (10) is necessary for (11). However, our normalisation (6)
or (8) of ?n involves a condition with r>p, so there is a gap.

(e) Of course (10) requires w(tjn){0 \j, n. We may weaken (10) to

sup
n�1

:
j : w(tjn ){0

1
|?$nw| (t jn)

<�

if we restrict f by the condition w(tjn)=0 O f (t jn)=0. In particular this
allows us to consider w with compact support even when [t jn] j, n is not
contained in a bounded interval.

Our proofs rely on a lemma of Loomis [1, p. 129].
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Lemma 3. Let n�1 and [xj]n
j=1 , [cj]n

j=1 /R. Then for *>0,

m \{x: } :
n

j=1

cj

x&x j }>*=+�
8
*

:
n

j=1

|cj |. (13)

Proof. When all cj�0, we have equality in (13) with 8 replaced by 2
[1, p. 129]. The general case follows by writing

cj=c+
j &c&

j ,

where c+
j =max[0, cj], c&

j =&min[0, cj] and noting that

} :
n

j=1

cj

x&x j }>* O } :
n

j=1

c+
j

x&xj }>
*
2

or } :
n

j=1

c&
j

x&xj }>
*
2

or both. K

Proof of Theorem 1. (a) Assume that r<� and let a # R, *>0. We
may assume that

& fw&L�(R)=1. (14)

(The general case follows from the identity mbg(*)=mg(*�b) for b, *>0.)
Now

(Ln[ f ] &)(x)=(?n &)(x) :
n

j=1

( fw)(t jn)

(?$n w)(t jn)(x&tjn)

so

|Ln[ f ] &| (x)>*

implies

|?n&| (x)>*a (15)

or

} :
n

j=1

( fw)(tjn)

(?$nw)(tjn)(x&tjn) }>*1&a (16)

or both. The set of x satisfying (15) has, by (6), measure at most A*&ar.
The set of x satisfying (16) has by Loomis' Lemma, measure at most

8
*1&a :

n

j=1
} fw
?$n w } (tjn)�8*a&10n .
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Now, if *{1, we choose a so that

A*&ar=8*a&10n � a=
1

r+1 _1&
log[80n�A]

log * & .

Then we obtain

mLn[ f ] v(*)�2A1�(r+1)(80n �*)r�(r+1),

that is, (7) holds. The case *=1 follows from continuity properties of
Lebesgue measure.

(b) Here we have instead

|Ln[ f ] &| (x)>* O } :
n

j=1

( fw)(t jn)
(?$nw)(t jn)(x&t jn) }>

*
A

and again (9) follows from Loomis' Lemma. K

Proof of Corollary 2. (a) We may assume (14). Now by hypothesis,
there exists b>0 such that & vanishes outside [&b, b]. Thus in addition
to (7), we have the estimate

mLn[ f ] &(*)�2b, *>0.

Then from (2), if 0< p<r�(r+1), we have

&Ln[ f ] && p
Lp(R)� p \|

1

0
t p&1(2b) dt+2A1�(r+1)(80)r�(r+1)

_|
�

1
t p&1&r�(r+1) dt+=: C1<�.

(b) Here trivial modifications of this last estimate allows us to treat
0< p<1, while (9) gives

&Ln[ f ] &&weak(L1)=sup
*>0

*mLn[ f ] &(*)�C0. K

We make two final remarks: The proof of Theorem 1 also gives a weak
converse Marcinkiewicz�Zygmund inequality. For a given f, define

0n( f ) := :
n

j=1

| fw| (t jn)
|?$n w| (tjn)

.
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Then (7) holds with 0n replaced by 0n( f ). Moreover, (7) can be refor-
mulated in the following way: If P is a polynomial of degree �n&1 satisfying

|Pw| (tjn)�1, 1� j�n,

then

mP&(*)�2A1�(r+1)(80n �*)r�(r+1), *>0.

It would be useful to have more sophisticated estimates for mP& . For
special weights w, & and points [tjn], converse quadrature sum inequalities
imply these [4].
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